LSIC2SD120A15

Circuit Diagram TO-220-2L

2

1

Description

This series of silicon carbide (SiC) Schottky diodes has negligible reverse recovery current, high surge capability, and a maximum operating junction temperature of 175 °C. These diodes series are ideal for applications where improvements in efficiency, reliability, and thermal management are desired.

Extremely fast,

switching behavior

• Dramatically reduced

switching losses compared to Si bipolar

diodes

· Solar inverters

• Industrial motor drives

temperature-independent

HF RoHS 🗭

Features

- Positive temperature coefficient for safe operation and ease of paralleling
- 175 °C maximum operating junction temperature
- Excellent surge capability

Applications

- Boost diodes in PFC or DC/DC stages
- Switch-mode power supplies
 - EV charging stations
- Uninterruptible power supplies

Environmental

- Littelfuse "RoHS" logo = RoHS **RoHS** conform
- Littelfuse "HF" logo = HF Halogen Free
- Littelfuse "PB-free" logo = P0 Pb-free lead plating

Maximum Ratings					
Characteristics	Symbol	Conditions	Value	Unit	
Repetitive Peak Reverse Voltage	V _{RRM}	-	1200	V	
DC Blocking Voltage	V _R	T_= 25 °C	1200	V	
		T _c = 25 °C	44		
Continuous Forward Current	I _F	T _c = 135 °C	21	А	
		T _c = 150 °C	15		
Non-Repetitive Forward Surge Current	I _{FSM}	$T_c = 25 \text{ °C}, T_p = 10 \text{ ms}, \text{ Half sine pulse}$	120	A	
Power Dissipation		$T_c = 25 \text{ °C}$	214	- W	
	P _{Tot}	T _c = 110 °C	93		
Operating Junction Temperature	T	-	-55 to 175	°C	
Storage Temperature	T _{stg}	-	-55 to 150	°C	
Soldering Temperature	T _{sold}	-	260	°C	

Electrical Characteristics

	Symbol	Conditions	Value			
Characteristics			Min.	Тур.	Max.	Unit
Forward Voltage	V _F	I _F = 15 A, Τ _J = 25 °C	-	1.5	1.8	- V
		I _F = 15 A, Τ _J = 175 °C	-	2.2		
Reverse Current	I _R	V _R = 1200 V , T _J = 25 °C	-	<1	100	- μΑ
		V _R = 1200 V , T _J = 175 °C	-	10		
Total Capacitance	с	V _R = 1 V, f =1 MHz	-	920		pF
		V _R = 400 V, f = 1 MHz	-	88		
		V _R = 800 V, f = 1 MHz	-	64		
Fotal Capacitive Charge	Q _c	$V_{R} = 800 \text{ V}, Q_{c} = \int_{0}^{V_{R}} C(V) dV$	-	92		nC

Footnote: $T_1 = +25$ °C unless otherwise specified

Thermal Characteristics Value Symbol Conditions **Characteristics** Unit Min. Max. Typ. Thermal Resistance °C/W -0.7 R_{ejc} --

Figure 1: Typical Foward Characteristics

Figure 2: Typical Reverse Characteristics

Figure 3: Power Derating

Figure 4: Current Derating

Figure 5: Capacitance vs. Reverse Voltage

Figure 6: Capacitive Charge vs. Reverse Voltage

Figure 7: Stored Energy vs. Reverse Voltage

Dimensions-Package TO-220-2L

Recommended Solder Pad Layout

Symbol	Millimeters			
Symbol	Min	Nom	Max	
А	4.32	4.45	4.70	
A1	1.14	1.27	1.40	
A2	2.20	-	2.74	
b	0.69	-	0.90	
b2	1.17	-	1.62	
С	0.36	-	0.60	
D	14.90	-	15.90	
D1	8.62	-	9.40	
D2	12.50	-	12.95	
E	9.70	10.18	10.36	
E1	7.57	7.61	8.30	
e1	-	2.54	-	
е	5.03	5.08	5.13	
H1	6.30	6.55	6.80	
L	12.88	13.50	14.00	
L1	2.39	-	3.25	
øP	3.50	3.84	3.96	
Q	2.65	-	3.05	
R	-	-	0.25	

Figure 8: Transient Thermal Impedance

Part Numbering and Marking System

=	Schottky Diode
=	Voltage Rating (1200 V)
_	TO 220 Deekees (21 ee

- = TO-220 Package (2 Lead)
- = Current Rating (15 A)
- = Year
- = Week
- = Special Code

Packing Options

Part Number	Marking	Packing Mode	M.O.Q
LSIC2SD120A15	SIC2SD120A15	Tube	1000

Packing Specification (Tube for TO-220-2L)

- 7. Tolerance unless otherwise specified: Decimal: ±0.05 Angle: ±1° 8. Unit : Millimeter (mm)

Disclaimer Notice - Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse. Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.