

General Description

The MAX4818/MAX4819 high-bandwidth, low-on-resistance analog dual SPDT switches/4:1 multiplexers are designed to serve as integrated T1/E1 protection switches for 1+1 and N+1 line-card redundancy applications. Each MAX4818/MAX4819 replaces four electromechanical relays, significantly reducing board space, simplifying PC board routing, and reducing power consumption. These devices operate with ±3.3V or ±5V dual supplies for applications requiring T1/E1 signal switching in the line side of the interface transformer. Internal voltage multipliers drive the analog switches, yielding excellent linearity and low 4Ω typical on-resistance within the T1/E1 analog signal range. This high-bandwidth family of products is optimized for low return loss and matched pulse template performance in T1/E1 long-haul and short-haul applications.

The MAX4818/MAX4819 are available in a tiny 16-pin. 5mm x 5mm, thin QFN package and are specified over the extended -40°C to +85°C temperature range.

Applications

T1/E1 Redundancy Switching

Base Stations and Base-Station Controllers

Add and Drop Multiplexers

Multi-Service Provisioning Platforms

Edge Routers

Multi-Service-Switches (MSSs)

Digital Loop Carriers

Industrial Applications

Data Acquisition

Telecom Signal Switching

Test Equipment

Avionics

Features

- ♦ Dual SPDT and 4:1 Multiplexer Configurations
- ◆ Dual-Supply Operation from ±3.3V to ±5V
- ♦ Single-Supply Operation from +6V to +11V
- ♦ Hot-Insertion Tolerant with No DC Path to the **Supplies**
- ♦ Low On-Resistance, RoN = 4Ω (typ) and 6Ω (max)
- ♦ Over 350MHz -3dB Signal Bandwidth (MAX4818)
- **♦** Excellent Crosstalk and Off-Isolation Performance Over the T1/E1 Signal Spectrum: Over 110dB Crosstalk Attenuation at 1MHz (MAX4818)
- **♦** Low Current Consumption of 2mA (max)
- ♦ -40°C to +85°C Extended Temperature Range
- ♦ Space-Saving, 16-Pin, 5mm x 5mm Thin QFN
- ♦ SET Controls All Switches Simultaneously For Redundancy Switching (MAX4819)

Pin Configurations

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	CONFIGURATION	PACKAGE CODE
MAX4818ETE+	-40°C to +85°C	16 TQFN-EP*	2 x SPDT	T1655-3
MAX4819ETE+	-40°C to +85°C	16 TQFN-EP*	4:1 MUX	T1655-3

*EP = Exposed Paddle

Devices are available in lead-free packages.

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND unless oth	erwise noted.)
V+	0.3V to +6V
V	6V to +0.3V
V+ to V	0.3V to +12V
IN_, A0, A1, SET, EN	0.3V to $(V+) + 0.3V$
NO_, NC_, COM	12V to +12V
NO_, to COM_, NC_ to COM	18V to +18V
Continuous Current (NO_, NC_, COM_)	±100mA
Continuous Current (Any Other Terminal)	±30mA

Peak Current (NO_, NC_, COM_) (pulsed at 1ms, 10% duty cycle) Continuous Power Dissipation (T _A = +70°C)	
16-Pin Thin QFN 5mm x 5mm (derate 33.3n	•
above T _A = +70°C) Operating Temperature Range	
Storage Temperature Range	
Junction Temperature	
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual ±3.3V Supplies

 $(V + = +3.3V \pm 10\%, V - = -3.3V \pm 10\%, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.})$ (Note 1)

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS	
ANALOG SWITCH	•						•
Fault-Free Analog Signal Range	VCOM_ VNO_ VNC_			V-		V+	V
		V+ = +3V, V- = -3V,	T _A = +25°C		4	5	
MAX4818 On-Resistance	Ron	I _{COM_} = 30mA, V _{NO_} or V _{NC_} = +3V (Note 2)	$T_A = T_{MIN}$ to T_{MAX}			6	Ω
		V+ = +3V, V- = -3V,	$T_A = +25^{\circ}C$		4	5	
MAX4819 On-Resistance	Ron	I _{COM} _ = 30mA, V _{NO} _ or V _{NC} _ = +3V (Note 2)	$T_A = T_{MIN}$ to T_{MAX}			6.2	Ω
		V+ = +3V, V- = -3V,	T _A = +25°C		0.3	0.6	
On-Resistance Match Between Channels	ΔR _{ON}	I _{COM} _ = 30mA, V _{NO} _ or V _{NC} _ = +3V (Notes 2, 3)	T _A = T _{MIN} to			0.8	Ω
		V+ = +3V, V- = -3V,	$T_A = +25^{\circ}C$		0.5	1.2	
On-Resistance Flatness	R _{FLAT} (ON)	ICOM_ = 30mA, V _{NO_} or V _{NC_} = -3V, 0V, +3V (Notes 2, 4)	$T_A = T_{MIN}$ to T_{MAX}			1.5	Ω
NO or NC Off-Leakage Current	INO_(OFF) INC_(OFF)	V+ = +3.6V, V- = -3.6V, VCOM_ = -3V, +3V, VNO_ or VNC_ = +3V, -3V		-10		+10	nA
COM Off-Leakage Current	ICOM_(OFF)	V+ = +3.6V, V- = -3.6V, VCOM_ = -3V, +3V, VNO_ or VNC_ = +3V, -3V		-10		+10	nA
COM On-Leakage Current	ICOM_(ON)	V+ = +3.6V, V- = -3.6V, V _{COM} _ = -3V, +3V, V _{NO} _ or V _{NC} _ unconnected	d	-15		+15	nA

ELECTRICAL CHARACTERISTICS—Dual ±3.3V Supplies (continued)

 $(V+ = +3.3V \pm 10\%, V- = -3.3V \pm 10\%, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}\text{C.}$) (Note 1)

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS	
FAULT	-1						
Fault Analog Signal Range	VCOM_ VNO_ VNC_	V+ = +3.3V, V- = -3.3V		-11		+11	V
NO or NC Off-Leakage Current	I _{NO} _ I _{NC} _	V+ = +3.3V, V- = -3.3V, V _{COM} _ = +11V, -11V, V _{NO} _ or V _{NC} _ = -5.5V, +5.5	5V	-1		+1	μА
COM Off-Leakage Current	ICOM_	V+ = +3.3V, V- = -3.3V, V _{COM} _ = +11V, -11V, V _{NO} _ or V _{NC} _ = -5.5V, +5.5	5V	-1		+1	μΑ
SWITCH DYNAMIC CHARACTER	RISTICS						
MAX4818	V _{CT1}	$R_L = 50\Omega$, $f = 1.024MHz$, F	igure 4		110		dB
Crosstalk (Note 5)	V _{CT2}	$R_L = 50\Omega$, $f = 30MHz$, Figure	4		77		ав
MAX4819	VHCT1	$R_L = 50\Omega$, $f = 1.024MHz$			50		dB
All-Hostile Crosstalk (Note 6)	VHCT2	$R_L = 50\Omega$, $f = 30MHz$			17		45
Off-Isolation (Note 7)	VISO1	V_{COM} to V_{NO} or V_{NC} , $R_L = 50\Omega$, $f = 1.024MHz$, Figure 4			60		- dB
On-isolation (Note 1)	V _{ISO2}	V_{COM} to V_{NO} or V_{NC} , $R_L = 50\Omega$, $f = 30MHz$, Figure	30			35	
On-Channel -3dB Bandwidth	BW	$R_S = R_L = 50\Omega$, Figure 4	MAX4818		350		MHz
On-Charner-Sub Bandwidth	DVV	nS = nL = 30 22 , Figure 4	MAX4819		220		IVIITIZ
COM On-Capacitance	CONTOON	f = 1MHz, Figure 5	MAX4818		20		pF
CON On-Capacitance	CON(COM_)	T = TIVITIZ, FIGURE 5	MAX4819		40		ρг
COM Off-Capacitance	Coff(COM)	f = 1MHz, Figure 5	MAX4818		15		pF
CON On-Capacitance	COFF(COM_)	MAX4819			30		Ы
NC/NO Off-Capacitance	Coff	f = 1MHz, Figure 5			7		рF
Charge Injection	Q	$C_L = 1.0 nF, V_{GEN} = 0,$	MAX4818		35		рС
Charge injection	<u> </u>	R _{GEN} = 0, Figure 3	MAX4819		60		РО
Fault Recovery Time	trec	V _{NO_} , V _{NC_} , V _{COM_} = -11V			128		μs
		V_{NO} or V_{NC} = +3 V ,	$T_A = +25^{\circ}C$		20	50	<u> </u>
Turn-On Time	ton	$R_L = 300\Omega$, $C_L = 35pF$, Figure 2	$T_A = T_{MIN}$ to T_{MAX}			50	μs
		V_{NO} or V_{NC} = +3 V ,	$T_A = +25^{\circ}C$		0.5	1	
Turn-Off Time	tOFF	$R_L = 300\Omega$, $C_L = 35pF$, Figure 2	$T_A = T_{MIN}$ to T_{MAX}	1		1	μs
Power-Up Delay	tDEL			_	128		μs

ELECTRICAL CHARACTERISTICS—Dual ±3.3V Supplies (continued)

 $(V + = +3.3V \pm 10\%, V - = -3.3V \pm 10\%, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.})$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LOGIC INPUT (IN_, EN, SET, A), A1)					
Input Voltage Low	VIL				0.8	V
Input Voltage High	VIH		2.4			V
Input Leakage Current	IIN	$V_{IN} = 0$ or $V+$	-1		+1	μΑ
POWER SUPPLY						
Quiescent Positive Supply Current	I+	$V+ = +3.6V$, $V- = -3.6V$, $V_{IN} = 0$ or $V+$		0.8	2	mA
Quiescent Negative Supply Current	I-	V+ = +3.6V, V- = -3.6V, V _{IN} _ = 0 or V+		0.8	2	mA
Positive Supply Voltage	V+		3.0		3.6	V
Negative Supply Voltage	V-		-3.6		-3.0	V

ELECTRICAL CHARACTERISTICS—Dual ±5V Supplies

 $(V+ = +5V \pm 10\%, V- = -5V \pm 10\%, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
ANALOG SWITCH	•						•
Fault-Free Analog Signal Range	V _{COM} _ V _{NO} _ V _{NC} _			V-		V+	V
MAX4818		V+ = +4.5V, V- = -4.5V,	T _A = +25°C		4	5	
On-Resistance	RON	I _{COM} _ = 30mA, V _{NO} _ or V _{NC} _ = +3V (Note 2)	$T_A = T_{MIN}$ to T_{MAX}			6	Ω
MAY4040		V+ = +4.5V, V- = -4.5V,	$T_A = +25$ °C		4	5	
MAX4819 On-Resistance	RON	I _{COM} _ = 30mA, V _{NO} _ or V _{NC} _ = +3V (Note 2)	$T_A = T_{MIN}$ to T_{MAX}			6.2	Ω
		V+ = +4.5V, V- = -4.5V,	$T_A = +25^{\circ}C$		0.3	0.6	
On-Resistance Match Between Channels	ΔR _{ON}	I _{COM} = 30mA, V _{NO} or V _{NC} = +3V (Notes 2, 3)	T _A = T _{MIN} to T _{MAX}			0.8	Ω
		V+ = +4.5V, V- = -4.5V,	T _A = +25°C		0.5	1.2	
On-Resistance Flatness	RFLAT(ON)	ICOM_ = 30mA, V _{NO_} or V _{NC_} = -3V, 0V, +3V (Notes 2, 4)	$T_A = T_{MIN}$ to T_{MAX}			1.5	Ω
NO or NC Off-Leakage Current	INO_(OFF)	V+ = +5.5V, V- = -5.5V, V _{COM} = -5V, +5V, V _{NO} or V _{NC} = +5V, -5V		-10		+10	nA
COM Off-Leakage Current	ICOM_(OFF)	V+ = +5.5V, V- = -5.5V, VCOM_ = -5V, +5V, VNO_ or VNC_ = +5V, -5V		-10		+10	nA

ELECTRICAL CHARACTERISTICS—Dual ±5V Supplies (continued)

 $(V+ = +5V \pm 10\%, V- = -5V \pm 10\%, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}\text{C.}$) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
COM On-Leakage Current	ICOM_(ON)	V+ = +5.5V, V- = -5.5V, V _{COM} = -5V, +5V, V _{NO} or V _{NC} unconnected		-15		+15	nA
FAULT							
Fault Analog Signal Range	V _{COM} _ V _{NO} _ V _{NC} _	V+ =5V, V- = -5V		-11		+11	V
NO or NC Off-Leakage Current	I _{NO} _	V+ = 5V, V- = -5V, V _{NO_} or V _{NC_} = +11V, -1 V _{COM_} = -5.5, +5.5V	1V,	-1		+1	μΑ
COM Off-Leakage Current	ICOM_	V+ = 5V, V- = -5V, V _{NO_} or V _{NC_} = +11V, -1 V _{COM_} = -5.5, +5.5V	-1		+1	μА	
SWITCH DYNAMIC CHARACTE	RISTICS						
MAX4818	V _{CT1}	$R_L = 50\Omega$, $f = 1.024MHz$,	Figure 4		110		dB
Crosstalk (Note 5)	V _{CT2}	$R_L = 50\Omega$, $f = 30MHz$, Fig	ure 4		77		uБ
MAX4819	V _{HCT1}	$R_L = 50\Omega$, $f = 1.024MHz$			50		dB
All-Hostile Crosstalk (Note 6)	V _{HCT2}	$R_L = 50\Omega$, $f = 30MHz$			17		GD
Off-Isolation	V _{ISO1}	V_{COM} to V_{NO} or V_{NC} , $R_L = 50\Omega$, $f = 1.024MHz$, Figure 4			60		dB
(Note 6)	V _{ISO2}	V_{COM} to V_{NO} or V_{NC} , $R_L = 50\Omega$, $f = 30MHz$, Fig	ure 4		30		uв
On Channel 2dD Bandwidth	DW	$R_S = R_L = 50\Omega$,	MAX4818		350		NALI-
On-Channel -3dB Bandwidth	BW	Figure 4	MAX4819		220		MHz
COM On-Capacitance	Convoca	f = 1MHz, Figure 5	MAX4818		20		pF
COM On-Capacitance	CON(COM_)	1 – Tivii iz, i igule 3	MAX4819		40		ρι
COM Off-Capacitance	Coff(COM_)	f = 1MHz, Figure 5	MAX4818		15		рF
OGW ON Gapacitanic	OOFF(COIVI_)	1 - 11VII 12, 1 1gul 0 0	MAX4819		30		Pi
NC/NO Off-Capacitance	Coff	f = 1MHz, Figure 5	ı		7		pF
Charge Injection	Q	$C_L = 1.0 nF, V_{GEN} = 0,$	MAX4818		35		рС
		R _{GEN} = 0, Figure 3	MAX4819		60		·
Fault Recovery Time	tREC	V _{NO_} , V _{NC_} , V _{COM_} = -11			128		μs
Town On Time		V_{NO} or V_{NC} = +3V,	T _A = +25°C		20	50	
Turn-On Time	ton	$R_L = 300\Omega$, $C_L = 35pF$, Figure 2	TA = TMIN to TMAX			50	μs
		V_{NO} or V_{NC} = +3 V ,	$T_A = +25^{\circ}C$		0.5	1	
Turn-Off Time	toff	$R_L = 300\Omega$, $C_L = 35pF$, Figure 2	$T_A = T_{MIN}$ to T_{MAX}			1	μs
Power-Up Delay	tDEL				128		μs

ELECTRICAL CHARACTERISTICS—Dual ±5V Supplies (continued)

(V+ = +5V ±10%, V- = -5V ±10%, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LOGIC INPUT (IN_, EN, SET, A0,	A1)					
Input Voltage Low	V _{IL}				0.8	V
Input Voltage High	V _{IH}		2.4			V
Input Leakage Current	I _{IN}	V _{IN} _ = 0 or V+	-1		+1	μΑ
POWER SUPPLY						
Quiescent Positive Supply Current	I+	$V+ = +5.5V$, $V- = -5.5V$, $V_{1N} = 0$ or $V+$		0.9	2	mA
Quiescent Negative Supply Current	l-	V+ = +5.5V, V- = -5.5V, V _{IN} = 0 or V+		0.9	2	mA
Positive Supply Voltage	V+		4.5		5.5	V
Negative Supply Voltage	V-		-5.5		-4.5	V

- **Note 1:** All parameters are production tested at T_A = +85°C and guaranteed by design over specified temperature range.
- Note 2: Guaranteed by design, not production tested.
- Note 3: $\Delta R_{ON} = R_{ON} (MAX) R_{ON} (MIN)$.
- **Note 4:** Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.
- Note 5: Between any two switches.
- **Note 6:** All-hostile crosstalk from all OFF multiplexer inputs to the ON multiplexer channel. All-hostile crosstalk is tested by applying the same signal to all OFF inputs and measuring the crosstalk on the ON channel (COM terminal of the multiplexer.)
- Note 7: Off-Isolation = 20log₁₀ [V_{COM} / (V_{NC} or V_{NO})], V_{COM} = output, V_{NC} or V_{NO} = input to OFF switch.

Typical Operating Characteristics

Typical Operating Characteristics (continued)

Typical Operating Characteristics (continued)

Typical Operating Characteristics (continued)

Typical Operating Characteristics (continued)

Pin Description

Ī	PIN		PIN		FUNCTION
MAX4818	MAX4819	NAME	FUNCTION		
1	1	NO1	Analog Multiplexer Normally Open Terminal 1		
2	2	V-	Negative Supply Voltage. Bypass V- to ground with a 0.1µF ceramic capacitor.		
3	3	GND	Ground		
4	12	NO2	Analog Multiplexer Normally Open Terminal 2		
5, 10, 16	5, 8, 10, 16	N.C.	No Connect. Not Internally Connected.		
6	6	EN	Enable Input. Connect EN to V+ or a logic-high for normal operation. Connect EN to ground to disable all switches.		
7	_	IN2	Switch 2 Logic-Level Input (See Table 1)		
8	_	COM2	Analog Switch Common Terminal 2		
9	_	NC2	Analog Switch Normally Close Terminal 2		
11	11	V+	Positive Supply Voltage. Bypass V+ to ground with a 0.1µF ceramic capacitor.		
12	_	NC1	Analog Switch Normally Close Terminal 1		
13	_	COM1	Analog Switch Common Terminal 1		
14	_	IN1	Switch 1 Logic-Level Input (See Table 1)		
15	15	SET	Logic Input. Drive SET logic-high to set all switches. (See Tables 1, 2)		
_	4	NO4	Analog Multiplexer Normally Open Terminal 4		
_	7	A0	Multiplexer Address Input 0 (See Table 2)		
_	9	NO3	Analog Multiplexer Normally Open Terminal 3		
	13	COM	Analog Multiplexer Common Terminal		
_	14	A1	Multiplexer Address Input 1 (See Table 2)		
EP	EP	EP	Exposed Paddle. Connect exposed paddle to V- or leave unconnected.		

Detailed Description

The MAX4818/MAX4819 are each a high-bandwidth, low-on-resistance dual-SPDT analog switch/4:1 multiplexer, respectively. Both the MAX4818 and the MAX4819 are designed to serve as integrated T1/E1 analog protection switches for 1+1 and N+1 line-card redundancy applications. These devices replace electromechanical relays to save board space, reduce power consumption, and simplify PC board routing. The MAX4818/ MAX4819 allow the user to live insert the boards with no adverse effects.

The MAX4818/MAX4819 operate from $\pm 3.3 V$ or $\pm 5 V$ dual supplies, which are required for E1/T1 signal switching in the line-side of the interface transformer. Internal voltage multipliers supply the switches yielding excellent linearity and low on-resistance, typically 4Ω within the E1/T1 analog signal range. This high-bandwidth family of devices is optimized for low return loss

and matched pulse template performance in E1/T1 short-haul and long-haul applications.

Logic Inputs

The MAX4818 has four digital control inputs: EN, SET, IN1, and IN2. The EN input enables the switches. A logic 1 on SET connects COM to the NO_ terminal. IN_ controls the switch when SET is low, as shown in Table 1.

The MAX4819 has four digital control inputs: EN, SET, A1, and A0. The EN input enables the multiplexer. A logic 1 on SET connects all NO_ to COM. A1 and A0 control which terminal will be connected to COM when SET is low, as shown in Table 2.

Analog Signal Levels

The on-resistance of the MAX4818/MAX4819 is very low and stable as the analog signals are swept from V- to V+ (see the *Typical Operating Characteristics*).

Fault Protection

The fault protection of the MAX4818/MAX4819 allows the devices to handle input signals of more than twice the supply voltage without clamping the signal, latching up, or disturbing other cards in the system. The device detects when the input voltage drops below the negative supply. As soon as a fault condition is detected, the switch is immediately turned off for 128 clock cycles (typically 128µs). At the end of the 128µs timeout, the switch is turned back on for one clock cycle. At the end of the one clock cycle, if the signal is within the operating range, the switch will remain on. Otherwise, the device will turn the switch off again for 128 clock cycles. This will repeat until the signal is within the operating range. In T1/E1 redundancy applications, this can happen when the load resistor (RL) is removed or disconnected for any reason, as shown in Figure 1. Without a load resistor, the output voltage when using a 1:2 transformer can be as high as $\pm 11V$.

Hot Insertion

The MAX4818/MAX4819 tolerate hot insertions, thus are not damaged when inserted into a live backplane. Competing devices can exhibit low impedance when plugged into a live backplane that can cause high power dissipation leading to damage of the device itself. The MAX4818/MAX4819 have relatively high input impedance when V+ and V- supplies are unconnected or connected to GND. Therefore, the devices are not destroyed by a hot insertion. In order to guarrantee data integrity, the V+ and V- supplies must be properly biased.

Applications Information

T1/E1 N+1 Redundancy

Figures 6, 7, and 8 show a basic architecture for twisted-pair interface (120Ω , E1 or 100Ω , T1). Coaxial cable interface (75Ω , E1) can be illustrated with the same figures but without the single-ended to differential conversion stage. A single protection card can replace up to N line cards in a N+1 redundancy scheme. Figure 6 shows the switches sitting in the line cards where they can reroute any of the input/output signals to a protection line card. Figure 7 shows a "multiplexed" redundancy architecture using the MAX4819 where the multiplexers are in the line cards. This architecture is more scalable as the number of boards is increased. It also does not

Table 1. Dual SPDT Truth Table (MAX4818)

EN	SET	IN_	COM_ CONNECTION
0	Χ	Χ	NONE
1	0	0	NC_
1	0	1	NO_
1	1	X	NO_

(X = don't care.)

Table 2. 4:1 Multiplexer Truth Table (MAX4819)

EN	SET	A1	Α0	COM CONNECTION
0	Χ	Χ	Χ	NONE
1	0	0	0	NO1
1	0	0	1	NO2
1	0	1	0	NO3
1	0	1	1	NO4
1	1	Χ	Χ	NO1, NO2, NO3, NO4

(X = don't care.)

Figure 1. Fault Protection

require a dedicated external switching card as the multiplexers reside in the line cards themselves. The number of signals routed through the backplane is substantially higher than in the switching-card architecture. Figure 8 shows a similar architecture, but the multiplexers reside in the protection switching card. These figures do not show the surge-protection elements and resistors for line termination/impedance matching.

Test Circuits/Timing Diagrams

Figure 2. Switch Turn-On/Turn-Off Times

Figure 3. Charge Injection

Figure 4. On-Loss, Off-Isolation, and Crosstalk

Test Circuits/Timing Diagrams (continued)

Figure 5. Channel Off-/On-Capacitance

The low on-resistance and high-bandwidth of the MAX4818/MAX4819 yield good pulse template and return-loss performance (see the *Typical Operating Characteristics*). The pulse template tests for E1 (twisted-pair interface 120Ω and coaxial interface 75Ω) and T1 (twisted-pair interface 100Ω) were tested using the Dallas DS2155 single-chip-transceiver evaluation board, and twelve switches in parallel with one switch closed and the other eleven open. The internal transmit

termination feature must be disable when using this circuit. In order to use the same transmit resistors for E1 twisted-pair and coaxial cables, the Transmit Line Buildout Control Register (TLBC) is set to the value 6Ah. This sets the driver voltage so the output pulse has the right amplitude for both 120 Ω (twisted pair) and 75 Ω (coaxial) loads. The analog switches were powered with dual power supplies at ±5V.

Figure 6. Switch Architecture for Twisted-Pair Cable (120 Ω , E1 or 100 Ω , T1). Same figure for Coaxial Cable (75 Ω , E1) without the single-ended-to-differential conversion.

Figure 7. Multiplexed Redundancy Architecture with Multiplexer in the Line Cards for Twisted-Pair Cable (120 Ω , E1 or 100 Ω , T1). Same figure for coaxial cable (75 Ω , E1) without the single-ended-to-differential conversion.

Figure 8. Multiplexed Redundancy Architecture with Multiplexer Out of the Line Cards for Twisted-Pair Cable (120 Ω , E1 or 100 Ω , T1). Same figure for coaxial cable (75 Ω , E1) without the single-ended-to-differential conversion.

Typical Operating Circuits

Typical Operating Circuits (continued)

Functional Diagram

Chip Information

PROCESS: BICMOS

CONNECT EXPOSED PADDLE TO V-.

_Pin Configurations (continued)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

COMMON DIMENSIONS														EXPOSED PAD VARIATIONS								
PKG.		16L 5x5		20L 5x5		28L 5x5			32L 5x5		40L 5x5			PKG.	D2			E2				
	_	NOM, MAX,	_	_	$\boldsymbol{-}$	-	_	_	_	$\overline{}$					CODES	MIN.	NOM.	MAX.	MIN.	NOM	MAX.	
A		0.75 0.80													T1655-2	3,00	3,10	3,20	3,00	3,10	3.20	
A1		0.02 0.05		0.02						0.02		0	0.02		T1655-3	3.00	3.10	3.20	3.00	3.10	3.20	
A2		20 REF.		20 RE			0 REF			0 RE	-		.20 RE		T1655N-1	3,00	3,10	3,20	3,00	3,10	3,20	
ь		0.30 0.35								0.25			0.20		T2055-3	3.00	3.10	3.20	3.00	3.10	3.20	
D E		5.00 5.10						5.10 4					5.00		T2055-4	3.00	3.10	3.20	3.00	3,10	3.20	
6		5.00 5.10 80 BSC		.65 BS			5.00 ES			50 BS			0.40 BS		T2055-5	3.15	3.25	3.35	3.15	3.25	3.35	
k k	0.25	.00 B3C.	0.25			0.25	10 85		0.25	ου ΒΕ		0.25		ю.	T2855-3	3,15	3,25	3,35	3,15	3,25	3,35	
L	0.30	0.40 0.50	0.25				0.55 (0.40			0.40	0.50	T2855-4	2.60	2.70	2.80	2.60	2.70	2.80	
N	0.30	16	0.40	20	0.00		28	7.03		32	0.30	0.00	40	0.00	T2855-5	2.60	2.70	2.80	2.60	2.70	2.80	
ND	\vdash	4	\vdash	5	\dashv		7	+		8			10	\dashv	T2855-6	3.15	3.25	3.35	3.15	3.25	3.35	
NE	-	4	\vdash	5	\neg		7	\neg		8			10		T2855-7	2.60	2.70	2.80	2.60	2.70	2.80	
JEDEC	١	WHHB		WHHC	3	W	HHD-	1	W	HHD-	-2				T2855-8	3.15	3.25	3.35	3.15	3.25	3.35	
															T2855N-1	3.15	3.25	3.35	3.15	3.25	3.35	
															T3255-3	3.00	3.10	3.20	3.00	3.10	3.20	
OTES:															T3255-4			3.20		3.10		
1. DIM	ENSIC	ONING & TO	DLERA	WCIN	G CON	NFORM	A TO A	ASME	Y14.5	5M-19	994.				T3255-5	3.00	3.10	3.20		3.10	3.20	
2. ALL	DIME	NSIONS AF	RE IN	MILLIN	METER	RS. AN	GLES	ARE	IN DE	GRE	ES.				T3255N-1	3.00	3.10	3.20		3.10		
3. N IS	THE '	TOTAL NUI	MBER	OF TE	ERMIN	IALS.									T4055-1	3.40	3.50	3.60	3.40	3.50	3.60	
		MINAL #1 II M TO JESD	95-1	SPP-0	12. DI	ETAILS WITHIN	S OF 1	TERM	INAL :	#1 ID	ENTI	IER.	ARE		T4055-2			3.60 OMMOR		3.50 ISIONS		
COI OP	TIONAL	L, BUT MU: ER MAY BE				OR M/	4RKEI															
COI OP IDE	TIONAI NTIFIE IENSIO		EITHI ES TO	ER A P	MOLD ALLIZE	ED TE	RMINA				BURE	D BE	TWEE	1								
COI OP IDE DIW 0.25	TIONAL NTIFIE SENSIO	ER MAY BE ON 6 APPLI	EITHI IES TO Im FRO	ERAP OMET. OM TE	MOLD ALLIZE ERMIN	ED TEI AL TIP	RMIN/	AL AN	DIS	MEAS					ÆLY.							
COI OP IDE DIW 0.21	TIONAL INTIFIE SENSIC 5 mm A	ER MAY BE ON 6 APPLI AND 0.30 m	EITHI IES TO Im FRO TO TH	ER A P O MET. OM TE HE NUI	MOLD ALLIZE ERMIN MBER	ED TEI AL TIP OF TE	RMINA RMIN	AL AN	D IS I	MEAS					ÆLY.							
COI OPP IDE DIM 0.25	TIONAL NTIFIE SENSIC 5 mm A AND N	ER MAY BE ON 6 APPLI AND 0.30 m NE REFER	EITHI IES TO Im FRO TO TH POSSI	ER A P O MET. OM TE HE NUI IBLE II	MOLD ALLIZE ERMIN MBER N A SY	ED TEI AL TIP OF TE 'MMET	RMINA ERMIN TRICA	ALAN IALS C ILFAS	D IS I	MEAS NCH E	ANE	ESI	DE RE	SPECTIV								
COI OP* IDE DIM 0.25 ND 7. DEF COI 9. DR	TIONAI NTIFIE IENSIC 5 mm A AND N POPUL PLANA AWING	ER MAY BE ON 6 APPLI AND 0.30 m NE REFER LATION IS I	EITHI IES TO Im FRO TO TH POSSI LIES T MS TO	ER A P OMET. OM TE HE NUI IBLE II	MOLD ALLIZE ERMIN MBER N A SY E EXP	ED TEI AL TIP OF TE 'MMET OSED	RMIN/ RMIN TRICA HEAT	ALAN IALS C ILFAS ISINK	D IS IN ON EA SHION SLUG	MEAS ICH E I. IS AS	O ANE	E SI	IDE RE	SPECTI\								
COI OP' IDE DIW 0.2! ND 7 DEF A COI 9 DRJ T28	TIONAI NTIFIE SENSIC 5 mm A AND N POPUL PLANA AWING 155-3 A	ER MAY BE ON 6 APPLI AND 0.30 m NE REFER LATION IS I ARITY APPI G CONFORI	EITHI IES TO IM FRO TO TH POSSI LIES T MS TO 6.	ER A P O MET. OM TE HE NUI IBLE II TO THE O JEDE	MOLD ALLIZE ERMIN MBER N A SY E EXP	ED TEI AL TIP OF TE 'MMET OSED 1220, E	RMIN/ RMIN TRICA HEAT	ALAN IALS C ILFAS ISINK	D IS IN ON EA SHION SLUG	MEAS ICH E I. IS AS	O ANE	E SI	IDE RE	SPECTI\		Ī	n 4	A1.1	A C		48 48	271
COI OP' IDE 0.22 A ND 7. DEF A COI 9. DR/ T28 WAI	TIONAI NTIFIE SENSIC 5 mm A AND N POPUL PLANA AWING 155-3 A RPAGE	ER MAY BE ON 6 APPLI AND 0.30 m NE REFER LATION IS 6 ARITY APPL G CONFORI	EITHI IES TO IM FRO TO TH POSSI LIES T MS TO 6.	ER A P O MET. OM TE HE NUI IBLE II TO THE O JEDE	MOLD ALLIZE ERMIN MBER N A SY E EXP EC MO	ED TEI AL TIP OF TE 'MME1 OSED 1220, E	RMINA P. ERMIN TRICA HEAT EXCEP	AL AN IALS O IL FAS I SINK PT EXI	D IS II ON EA HION SLUG POSE	MEAS I. G AS ID PA	O ANE	E SI	IDE RE	SPECTI\		[₽₽	ALL	.AS	<u> </u>	1/1	ΧL
COI OPP IDE COI OP	TIONAI INTIFIE SENSIC 5 mm A AND N POPUL PLANA AWING ISS-3 A RPAGE RKING	ER MAY BE ON 6 APPLI AND 0.30 m NE REFER LATION IS I ARITY APPI G CONFORI AND T2855- E SHALL N	EITHI IES TO IM FRO TO TH POSSI LIES T MS TO 6. OT EX	ERAND MET. OM TE HE NUT IBLE IT TO THE D JEDE KCEED GE OR	MOLD FALLIZE FRMIN MBER N A SY E EXP EC MO 0.10 (ED TEI AL TIP OF TE 'MMET OSED 1220, E mm.	RMIN/ ERMIN TRICA HEAT EXCEP	AL AN IALS C IL FAS I SINK PT EXI	D IS IN EAR SHION SLUG POSE SE ON	MEAS I. G AS ID PA	O ANE	E SI	IDE RE	SPECTI\		Ľ					1/1	ΧL
COI OPP IDE COI OP	TIONAI NTIFIE SENSIC 5 mm A AND N POPUL PLANA AWING ISS-3 A RPAGE RKING WBER	ER MAY BE ON 6 APPLI AND 0.30 m NE REFER LATION IS I ARITY APPL G CONFORI AND T2855- E SHALL NO	EITHI IES TO IM FRO TO TH POSSI LIES T MS TO 6. OT EX ACKAG SHOV	ER A MET. OM TE HE NUT HE NUT TO THE O JEDE KCEED GE OR WN AR	MOLD ALLIZE ERMIN MBER N A SY E EXPO EC MO 0.10 r EIENTA RE FOF	ED TEI AL TIP OF TE MMET OSED 1220, E mm. TION I	RMIN/ ERMIN TRICA HEAT EXCEP REFEI	AL AN IALS C L FAS I SINK PT EXI RENC CE OF	D IS IN EARTHON SELUCION POSE	MEAS ACH E I. G AS D PA	WELI	ESI LAS	IDE RE	SPECTIV ERMINAL DR	.S.		me p	ACKA0	SE OUT 8, 32, 4	LINE,	N QFN, 53	

_Revision History

Pages changed at Rev 1: 1, 12, 21

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600